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Abstract. In multiparameter percolation models, a directional critical exponent may be
considered for each direction of approach in the parameter space to a point on the critical
surface. An elementary coupling argument shows that for each point on the critical surface the
directional critical exponents are equal for all directions strictly in the positive orthant. Using
the substitution method, the set of directions with equal directional critical exponents can be
extended beyond the orthant. The anisotropic triangular lattice bond percolation model is used
to illustrate the method.

1. Introduction

Several forms of multiparameter percolation models have been investigated. Anisotropic
bond percolation models with different occupancy probabilities for bonds or sites in different
directions were studied by Sykes and Essam (1964) and Kesten (1982). Mixed models,
having different parameters associated with sites and'bonds, were studied by Hammersley
(1980), McDiarmid (1980, 1981) and Wierman (1984).

General percolation models have been investigated from a variety of perspectives.
Books devoted to the subject are a mathematical monograph focusing on two-dimensional
models by Kesten (1982), a mathematical discussion of results for Z¢ emphasizing higher
dimensions by Grimmett (1989), an elementary description of physical applications by Efros
(1986), a discussion of scaling theory and numerical methods by Stauffer (1985), and Durrett
(1988), which describes the connections between interacting particle systems and percolation
models, Recent reviews of Aizenman (1987), Kesten (1987}, and Newman (1987) concern
critical exponents and scaling theory for percolation models.

A multiparameter percolation model with parameters py, pa, .. ., pg has parameter space
[0, 1]9. The percolative region P is the set of all parameter values for which infinite open
clusters exist with positive probability. The boundary of P is called the critical surface.

The exact critical surface is known only in special cases. For the square lattice bond
model with parameter p for horizontal bonds and g for vertical bonds, the critical surface
is p+ g = 1. The three-parameter bond model on the triangular lattice with parameters
u, v, and w has critical surface 1 —u — v — w + uvw = 0. Both of these solutions were
discovered by Sykes and Essam (1964). The anisotropic square lattice solution, as well
as a two-parameter anisotropic triangular lattice model, was rigorously verified by Kesten
(1982). Proof of the full three-parameter anisotropic friangular lattice solution is implied
by Kesten {1982), Menshikov et al (1986), and Aizenman and Barsky (1987), establishing
the equivalence of various versions of the critical probability.
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In one-parameter percolation models, behaviour near the critical probability is described
in terms of critical exponents. For multiparameter models, a point on the crtical sutface
may be approached along a variety of directions, and an appropriate critical exponent may be
defined for each direction. It is generally believed that the critical exponents corresponding
to all directions of approach from within P should be equal, although this has not yet been
proved, This note provides some progress toward a proof.

The points in the parameter space [0, 11? may be partially ordered by letting p =
(ProP2y---sPa) £ 9 =1q1,42,....q2) if and only if py < g forall i = 1,2,....4.
In section 2, an elementary coupling argument proves that in any d-parameter percolation
model, the critical exponents 8 and y for approaching a point p* on the critical surface
are equal for ail directions of approach in the orthants {p : p* < p} N[0, 1]° and
{p : p* > p} N[0, 119, respectively. The substitution method is adapted to the problem
in section 3. The method has led to considerable improvement of the rigorous critical
probability bounds for the Kagomé lattice bond model (Wierman 1990), and a proof of
equality of the critical exponents of the triangular and hexagonal lattice bond percolation
models (Wierman 1991). Using the substitution method, directions of approach to the
critical surface outside the orthants are considered for the three-parameter triangular lattice
bond model in section 4. The substitution method uses the detailed structure of the lattices
to compare the behaviour of the percolation model at two different parameter values.

2. General muitiparameter models

In this section, we consider a multiparameter Bernoulli percolation model on a connected
infinite graph . That is, for some integer d > 2 there are 4 classes £ of elements
{which may be edges or vertices) such that each element of &; is open with probability p;,
0 < pi < 1, independently of all other elements of G.

For any vertex v, let C, denote the open cluster containing v, ie. the set of elements of
& which may be reached through open paths from v. The percolation probability function
&:(p), p €10, 1}, represents the probability that v is in an infinite open cluster:

8u(p} = Ppl|Cy| = 9]
The mean cluster size is defined by
X(P) = Ep|Cyl.

Since G is connected, for each p, either 8,(p) = 0 for all v or §,(p) > O for all v.
Similarly, x.{p) < +co for all v or x,(p) = +co for all v. Thus, we define percolative
regions corresponding to these criteria (omitting the dependence on v from the notation):

Pa={pecl0,11® : 6(p)>0}
and
Pr={pel0,1¥ : x(p)<-+oo}.

For a set A C [0, 1)%, we say x € 8A if every neighborhood of x contains an element of
A and an element of [0, 11¢ — A. The critical surfaces are then defined by Sy = 3Py and
Sr = dPr.
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For a point p on critical surface Sy, and a direction given by vector ¢, we define the
critical exponent 5(¢) by

log[6(p + et) — 6(p)]
logeliz|

Bl) = lelfol

where || - || denotes Euclidean distance. If the limit does not exist, then denote the lim sup
and liminf by superscripts 4+ and — (respectively) on 8. Similarly, for p € Sy and a
direction 1, define

_ . logx(p —€r)
YO =l eIl

We now show that there is a common value of §(¢) for all # > O componentwise. A
similar argument will establish the result for y(z).

First, note that a standard coupling argument establishes that if p < g then 6(p) < 8(g).
Let {t,, € € G} be independent identically distributed uniform (0, 1) random variables, each
associated with an element ¢ of G. Construct a percolation. model with paramenter p by
declaring each element ¢ € & to be open if #, € p;: A model with parameter g may be
constructed similarly using the same random variables {u.}. However, any element that is
open in the first model is also open in the second model. Therefore, the existence of an
infinite open cluster in the first model implies exlstence of an infinite open cluster in the
second model, so 8(p) < 0(g).

Now, let p € Sy, and s > 0 and ¢ > 0 be different direction vectors in the parameter
space. Let M = max{z;/5;} and m = min{t; /s;}, so ms < ¢ < Ms, Then, fore > 0,

pPrems L ptet € pteMs
which, by the previous argument, implies that
8(ptems)<O(p+et) <O(p+eMs).

Taking logaritlims and dividing by log ||¢f || (which is negative for ¢ sufficiently small) yields

tog[8(p -+ ems) — 8(p)] 5 Togl8(p + €t} — 8(p)] S logl8{(p +eMs) — G(p}] ~
log Jlet|| ~ log [l i log |t

which implies that

loglf(p +ems) — 8(p)]  loglb(p +¢r) —8(p)] _ log[f(p +eMs) —8(p)] -
log [lems|| ~ log ljezll - log [[eMs))

Letting € — O, if the limits defining S(z) and B(s) exist, we have
B(s) =B .

If the defining limits do not exist, then f*(s) = A7 (1) and B=(s) = ~(2). -
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3. Substitution method

The substitution method was introduced by Wierman (1990) for the purpose of deriving
bounds for critical probabilities of bond percolation models. However, the underlying idea
of the method is the comparison of the behaviour of two different percolation models, which
is usefu! in the study of critical exponents as well.

To describe the application of the substitution method in a bond percolation model (for
convenience), consider a lattice ¢ which may be decomposed into a union of isomorphic
finite edge-disjoint connected subgraphs, in such a way that every edge is in a subgraph
and every vertex is in at least one subgraph. Vertices which are in more than one subgraph
are called boundary vertices. A path on the lattice may enter or leave a subgraph in the
decomposition only through its boundary vertices.

Consider a fixed subgraph G in this decomposition. Denote its boundary vertices by
A1, Aa, ..., A for some k. Any configuration (i.e. designation of bonds as open or closed)
on G determines a partition of the boundary vertices into clusters of vertices which are
connected by open bonds. Each such boundary partition may be denoted by a sequence of
vertices and vertical bars, where vertices are in distinct open clusters if and only if they
are separated by a vertical bar. For example, if the boundary vertex set consists of three
vertices, Ay, Az, and As, then A1A;|As indicates that A; and A; are in the same open
cluster but Az is in a different open cluster.

The bond percolation model on G with parameter p assigns a probability to each
configuration on G. A probability Pf(:r) for each boundary partition n is determined
by summing the probabilities of all configurations which produce the partition .

The set of boundary partitions is a partially ordered set. A partition x is a refinement
of a partition o, denoted & < o, if every cluster of = is contained entirely in a cluster of o,
or, equivalently, every cluster of o decomposes into clusters of &, The set of boundary
partitions ordered by refinement is a combinatorial lattice called the partition lattice.

Suppose that another lattice 7 may be decomposed into subgraphs with & boundary
vertices, corresponding to the substitution of a subgraph for each subgraph in the
decomposition of §G. Consider the subgraph H in H substituted for G in G, and identify
the boundary vertices with A; Az, ..., A¢. As above, a probability measure P;H on the
partition lattice of partitions of {A1, A, ..., Ap} is determined, from the percolation model
on M with parameter g.

In applying the substitution method to percolation models, the relevant comparison of
two probability measures P9 and P;" on the partition lattice is stochastic ordering: a filter
in a partially ordered set § is a subset F C Ssuchthatif g > fand fe F,theng € F.
If P and @ are two probability measures on §, then we say that P is srochastically smaller
than @, denoted P <5 Q, if P[F] < Q[F] for every filter F. The set of probability
measures on S are partially ordered by stochastic ordering.

Let B denote the union of the sets of boundary vertices of subgraphs in the
decompositions of G and H (with identification of boundary vertices of comresponding
subgraphs in G and H). A result of Preston (1974) implies that if Pf <s P;H, then there
is a coupling of the percolation models on each pair of corresponding subgraphs G and H,
in which C, N B on & with parameter p is contained in C, N B on & with parameter g.
By edge-disjointness, these couplings together give a coupling of the percolation models
in which C, N B in G with parameter p is contained in C, N B in H with parameter 4.
Therefore, 89(p) < 8™(g) and x%(p) < x"(q).

In this paper, we wish to apply the method to two families of probability distributions
arising: from approaching a point on the critical surface of a multiparameter bond model
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in two different d1rect10ns Lettmg Po € Sg, and ¢; and £ be unit direction vectors, we
wish to compare Pm+e,1 and Ppn +in, Vvia stochastic ordering. This will be accomplished
using directional denvatwes of the filter probability functions, as described in the following
paragraphs.

Note that, for a fixed decomposition of G into Isomorphlc subgraphs, there are a
finite number of filter probability functions, each of which is a polynomial function of
the parameters. Therefore, the filter probabilities are differentiable with respect to each
parameter, and a gradient vector exists for each filter probability. Directional derivatives
may be computed by taking the inner product of the direction vector with the gradient.

Suppose that for two directions, # and f, the directional derivatives of all the filter
probabilities at pg are positive. Then there exist constants ¢ and C such that for every
filter F

Po+cer2 [Fl< po+er1[F 1< .Du+CEtz[F ]

for ¢ > O sufficiently small. Thus

65(po + cety) < 8%(po + €t1) < 6%(po + Ceta)
which, as in section 2, leads to

B} = B(t)

if the defining limit exists in either direction, and g+(#) = B () and B8~ (t)) = B~ (1)
otherwise.

4. Triangular lattice model

To illustrate the application of the substitution method, consider the three-parameter
triangular lattice bond model, in which bonds are open with probability p, ¢, or r depending
on the direction of the bond. To apply the substitution method, partition the laitice info
edge disjoint triangles. Label the vertices of one such triangle A, B, and C, so that edge
AC has parameter p, AB has parameter ¢, and BC has parameter r.

The probabilities of the four non-minimal boundary vertex partitions are

P[ABC]= pgr +pg(l—r)+gr(l—p)+pr(l —q)
PIAB[C]=gq(1—p)(1-r) PLAC|B] = p(1~g)}1—r}  P[BC|A] =r(1—p)(1—-q)

and the eight filter prbbabilities are of the form
par+pg(1—r)+qr(1—p}+pr(—q)+iq(1—-p)(1—r)+jp(l—q)(1—r)+kr(l1~p)(1-g)
fori=0,1; j=0,1;and k =0, 1.

Thus, the gradients of the filter probabilities, written as column vectors, have the form:

p+r=2rp+i(l—q—r-gqr)—j(p—pr)y—k{r—pr)

( g+r—2qr—ilg—gr)+jl—g—r+qr)—kr—gr) )
p+g+2pg—ilg—pg)—j(p—pg)+%(1~p—q—pqg)



1856 J C Wierman

As discussed in section 3, any direction which has a positive component in the direction
of all eight gradients will have the same B critical exponent value as any direction in the
positive orthant. Equivalently, any vector lying ‘above’ all eight half-planes through the
origin which are orthogonal to these gradient vectors has the same 8 and y values as
directions in the non-negative orthant. The eight gradient vectors are

(@+r—2qr.p+r~2pr,p+q—2pg)  (r—gr,1—pr,p—pg)
(1—grr—pr,1-pq) (g —gr,p—pr,1—gp)

(1-4¢,1-p,0) ©1-rnl1-9)

1-r01-p) 1—g—r+gr,l—p—r+prl—p—g+ pg).

Note that if a direction vector ¢ has a strictly positive inner product with all 8 vectors, then
(by viewing the inner product as a continuous function of the coordinates of the direction
vector} every direction in a neighbourhood of # does also. Since all the non-zero components
of these gradient vectors are positive, for ¢ > (0 and b > 0, vectors of the forms (0, a, &),
(a, 0, b}, and {a, b, 0) all satisfy this condition. Therefore, for ¢ sufficiently small, directions
of the form (—e, a, b), (g, —e, b}, and (a, b, —¢) have the same 8 and y values as directions
in the positive orthant, Hence, the set of such directions extends beyond the positive orthant
for this multiparameter model.

As a special case, we consider the point on the critical surface with all coordinates
equal: p =g = r = 2sin(x/18). In this case, the gradient vectors (rescaled) give the
directions

(1,1, 1) {a.1,a} (1,e,a) (@.a,1)

(1,1,0 O LD 1,0, 1) (1,1, 1
where @ = 2 sin (7/18) — sin (:rr/lS)2 rz (.2267. The direction (1, 1, 1) is normal to the
critical surface at this point, so allows any direction of approach from within the percolative
region. The region satisfying all six remaining constraints is the intersection of half-spaces,

and thus is convex. The region may be characterized as the convex combinations of
multiples of the six rays '

(o) () (a5
() (52 (5o

which are the intersections of pairs of planes perpendicular to the remaining gradieat vectors.

3. Discussion and remarks

‘While the substitution method calculations explicitly used the detailed structure of the lattice
through its use of filter probabilities, it made use of the exact critical surface only in
characterizing the solution region: the positivity of components of the gradient vectors was
valid for any (p,q,r} € (0,1)%, and thus, in particular, for any point (p,q,r) on the
critical surface. Thus, the method may show that the solution region extends beyond the
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positive orthant for unsolved muitiparameter models and, in particular, is not restricted to
two-dimensional lattices only.

The two-parameter square lattice bond percolation model, with different parameters for
the horizontal and vertical bonds, was also considered. The substitution method was initially
applied using two different regions for the unit of substitution: a four-pointed star, and a
single square. In both cases, two filters caused restriction to the positive quadrant. For
the four-pointed star, the filter corresponded to the events that the opposite vertices were
connected by an open path, for which the probability is a function of only one parameter
in each case. For the square, the filters also corresponded to events with probabilities
independent of one of the parameters. By considering larger subgraphs of the square lattice,
the solution region may be extended beyond the quadrant, since none of the filter events
will have probabilities independent of a parameter.

A larger subgraph of the triangular lattice may also be considered. As with the square
laitice, it is expected that the solution region will become larger as the substituted region
is enlarged. This is suggested by a computational method currently under investigation. It
is an open guestion whether the solution region converges to the entire set of directions in
the super-critical region,

Similar results have been obtained recently in the more general setting of Fortuin—
Kasteleyn random cluster models by Bezuidenhout ez af (1992}, using a diffferent technique
introduced by Menshikov (1987) and applied by Aizenman and Grimmett (1991) to Ising
models.

Amplitudes and amplitude ratics have been investigated via series expansions, Monte
Carlo simulation, transfer matrix, and renormalization group methods. Privman et al (1991),
section 6.5, provides a summary of numerical results for percolation models. The evidence
for universality of amplitudes and amplitode ratios in anisotropic models is inconclusive,
with Priviman et af claiming that they need not be identical for different directions, and
Nightingale and Bidte (1983) suggesting they are identical for two-dimensional Ising
models. The substitution method described in this paper is not sufficiently refined to
provide mathematically rigorous proof of universality of amplitudes or amplitode ratios
in anisotropic percolation models to settle this question. Note also that, while establishing
identity of the critical exponents in different directions in these models, the method does
not provide exact values, bounds, or numerical estimates for the exponents.
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