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AbstracL In multiparameter percolation models, a dirstional critical exponent may be 
considered for each direction of approach in the parameter space to a point on the critical 
surface. An elementary coupling argument shows hat for each point on the critical surface the 
directional critical exponents are qual for all directions strictly in the positive orthant. Using 
the substitnlion method, the set of directions with eqal  directional critical expanents can be 
extended-beyond the orthant. The anisotropic triangular lattice bond percolation model is used 
to iuustrate the method. 

1. Introduction 

Several forms of multiparameter percolation models have been investigated. Anisotropic 
bond percolation models with different occupancy probabilities for bonds or sites in different 
directions were studied by Sykes and Essam (1964) and Kesten (1982). Mixed models, 
having different parameters associated with sites and bonds, were studied by Hammersley 
(1980), McDiannid (1980, 1981) and Wierman (1984). 

General percolation models have been investigated from a variety of perspectives. 
Books devoted to the subject are a mathematical monograph focusing on two-dimensional 
models by &ten (1982). a mathematical discussion of results for Zd emphasizing higher 
dimensions by Grimmett (1989), an elementary description of physical applications by Efros 
(1986), a discussion of scaling theory and numerical methods by Stauffer (1985), and Durrett 
(1988), which describes the connections between interacting particle systems and percolation 
models. Recent reviews of Aizenman (1987), Kesten (1987), and Newman (1987) concem 
critical exponents and scaling theory for percolation models. 

A multiparameter percolation model with parameters p1, p2. . . . , pd has parameter space 
[0, lld. The percolative region P is the set of all parameter values for which infinite open 
clusters exist with positive probability. The boundary of P is called the critical surface. 

The exact critical surface is known only in special cases. For the square lattice. bond 
model with parameter p for horizontal bonds and q for vertical bonds, the critical surface 
is p + 4 = 1. The threeparameter bond model on the triangular lattice with parameters 
U ,  U, and w has critical surface 1 - U - U - w + uuw = 0. Both of these solutions were 
discovered by Sykes and Essam (1964). The anisotropic square lattice solution, as well 
as a two-parameter anisotropic triangular lattice model, was rigorously verified by Kesten 
(1982). Proof of the full three-parameter anisotropic triangular lattice solution is implied 
by Kesten (1982). Menshikov et& (1986), and ” n a n  and Barsky (1987). establishing 
the equivalence of various versions of the critical probability. 
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In oneparameter percolation models,~behaviour near the critical probability is described 
in terms of critical exponents. For multiparameter models, a point on the critical surface 
may be approached along a variety of directions, and an appropriate critical exponent may be 
defined for each direction. It is generally believed that the critical exponents corresponding 
to all directions of approach from within P should be equal, although this has not yet been 
proved. This note provides some progress toward a proof. 

The points in the parameter space [O, 1Id may be partially ordered by letting p = 
(PI, p z , .  . . , p d )  < q = (q1 ,42 ,  .. . , q d )  if and only if pi < qi for all i = 1.2,. . . .d. 
In section 2, an elementary coupling argument proves that in any d-parameter percolation 
model, the critical exponents ,9 and y for approaching a point p* on the critical surface 
are equal for all directions of approach in the orthants { p  : p" -= p )  fl [O, lId and 
{ p  : p' > p ]  n [0, 1Id, respectively. The substitution method is adapted to the problem 
in section 3. The method has led to considerable improvement of the rigorous critical 
probability bounds for the Kagom.4 lattice bond model (Wierman 1990). and a proof of 
equality of the critical exponents of the triangular and hexagonal lattice bond percolation 
models (Wierman 1991). Using the substitution method, directions of approach to the 
critical surface outside the orthants are considered for the three-parameter triangular lattice 
bond model in section 4. The substitution method uses the detailed structure of the lattices 
to compare the behaviour of the percolation model at two different parameter values. 

2. General multiparameter models 

In this section, we consider a multiparameter Bernoulli percolation model on a connected 
infinite graph G. That is, for some integer d > 2 there are d classes E; of elements 
(which may be edges or vertices) such that each element of Ei is open with probability pi ,  
0 < pi < 1, independently of all other elements of G. 

For any vertex U, let C, denote the open cluster containing U, i.e. the set of elements of 
G which may be reached through open paths from U. The percolation probubilify function 
e&), p E [0, 1Id, represents the probability that U is in an infinite open cluster: 

e m  = pp[ic,i = W .  

The mean clusrer size is defined by 

X"(P) = EPlC"l. 

Since G is connected, for each p ,  either e&) = 0 for all U or e&) > 0 for all U. 
Similarly, x&) e +w for all U or xu@) = +eo for all U. Thns, we define percolative 
regions corresponding to these criteria (omitting the dependence on U from the notation): 

P ,  = ( p  E [o, lid : e@) > 0) 

and 

PT = { p  E [o, 1Id : x ( p )  4 +w). 

For a set A c [0, lid, we say x E a A  if every neighborhood of x contains an element of 
A and an element of [0, 1Id - A.  The critical su@ces are then defined by SH = aP, and 
ST = aPT. 
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For a point p on critical surface SN, and a direction given by vector t, we define the 
critical exponent p ( t )  by 

where 11 . 11 denotes Euclidean distance. If the limit does not exist, then denote the limsup 
and liminf by superscripts + and - (respectively) on @. Similarly, for p E S, and a 
direction t, define 

We now show that there is a common value of p(t)  for all t > 0 componentwise. A 
similar argument will establish the result for y( t ) .  

First, note that a standard coupling argument establishes that if p < q then O(p) < e(q). 
Let [U,, e E G )  be independent identically distributed uniform (0 , l )  random variables, each 
associated with an element e of G. Construct a percolation model with paramenter p by 
declaring each element e E &i to be open if ue < pi; A model with parameter q may be 
constructed similarly using the same random variables [U<). However, any element that is 
open in the first model is also open in the second model. Therefore, the existence of an 
infinite open cluster in the first model implies existence of an infinite open clustk in the 
second model, so 6 ( p )  < B(q). 

Now, let p E SH, and s > 0 and 't > 0 be different direction vectors in the parameter 
space. Let M = max[ti/si} and m = min(ti/si). so ms < t < Ms. Then, for E > 0, 

p + E M S  p +cms  < p + st 

which, by the previous argument, implies that 

e ( p  +Ems) < e ( p  +Et) < e ( p  + E M S ) .  

Taking logarithms and dividing by log llef 11 (which is negative for E sufficiently.small) yields 
~~ 

which implies that 

Letting E + 0, if the limits defining p ( t )  ~d p(s) exist, we have 

B(s) = B ( t ) .  

If the defining limits do not exist, then p+(s) = p+(t) and p-(s )  = p - ( t ) .  
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* 3. Substitution method 

The substitution method was introduced by Wieman (1990) for the purpose of deriving 
bounds for critical probabilities of bond percolation models. However, the underlying idea 
of the method is the comparison of the behaviour of two different percolation models, which 
is useful in the study of critical exponents as well. 

To describe the application of the substitution method in a bond percolation model (for 
convenience), consider a lattice G which may be decomposed into a union of isomorphic 
finite edge-disjoint connected subgraphs, in such a way that every edge is in a subgraph 
and every vertex is in at least one subgraph. Vertices which are in more than one subgraph 
are called boundary vertices. A path on the lattice may enter or leave a subgraph in the 
decomposition only through its boundary vertices. 

Consider a fixed subgraph G in this decomposition. Denote its boundary vertices by 
AI,  A*, . . . , AI for some k. Any configuration (i.e. designation of bonds as open or closed) 
on G determines a partition of the boundary vertices into clusters of vertices which are 
connected by open bonds. Each such boundary partition may be denoted by a sequence of 
vertices and vertical bars, where vertices are in distinct open clusters if and only if they 
are separated by a vertical bar. For example, if the boundary vertex set consists of three 
vertices, Al,Az,  and As, then A I A z ~ A ~  indicates that A1 and A2 are in the same open 
cluster but AB is in a different open cluster. 

The bond percolation model on G with parameter p assigns a probability to each 
configuration on G. A probability P j ( x )  for each boundary partition P is determined 
by summing the probabilities of all configurations which produce the partition x .  

The set of boundary partitions is a partially ordered set. A partition x is a refinement 
of a partition U ,  denoted P < U ,  if every cluster of n is contained entirely in a cluster of U ,  

or, equivalently, every cluster of U decomposes into clusters of r. The set of boundary 
partitions ordered by refinement is a combinatorial lattice called the pam'tion lattice. 

Suppose that another lattice 7-1 may be decomposed into subgraphs with k boundary 
vertices, corresponding to the substitution of a subgraph for each subgraph in the 
decomposition of G. Consider the subgraph H in 7-1 substituted for G in G, and identify 
the boundary vertices with A I ,  6,. . . , Ah. As above, a probability measure P," on the 
partition lattice of partitions of {AI, Az, . . . , At] is determined, from the percolation model 
on ?-I with parameter q. 
h applying the substitution method to percolation models, the relevant comparison of 

two probability measures P," and P," on the partition lattice is stochastic ordering: aflter 
in a partially ordered set S is a subset F C S such that if g f and f E F ,  then g E F .  
If P and Q are two probability measures on S, then we say that P is stochanicolEy d I e r  
than Q,  denoted P <S Q, if P[F] < Q[F] for every filter F. The set of probability 
measures on S are partially ordered by stochastic ordering. 

Let B denote the union of the sets of boundary vertices of subgraphs in the 
decompositions of G and 'H (with identification of boundary vertices of corresponding 
subgraphs in B and 7-1). A result of Preston (1974) implies that if Pf <s P,", then there 
is a coupling of the percolation models on each pair of corresponding subgraphs G and H, 
in which C, C l  B on G with parameter p is contained in C, f l  B on H with parameter q. 
By edgedisjointness, these couplings together give a coupling of the percolation models 
in which C, n B in G with parameter p is contained in C, n B in 7-1 with parameter q. 
Therefore, 0%) < B Y q )  and x g ( p )  < ~ " ( 4 ) .  

In this paper, we wish to apply the method to two families of probability distributions 
arising from approaching a point on the critical surface of a multiparameter bond model 
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in two different directions. Letting PO E S H .  and t, and tz be unit direction vectors, we 
wish to compare Pz+er, and Pitdh via stochastic ordering. This will be accomplished 
using directional derivatives of the filter probability functions, as described in the following 
paragraphs. 

Note that, for a fixed decomposition of B into isomorphic subgraphs, there are a 
finite number of filter probability functions, each of which is a polynomial function of 
the parameters. Therefore, the filter probabilities are differentiable with respect to each 
parameter, and a gradient vector exists for each filter probability. Directional derivatives 
may be computed by taking the inner product of the direction vector with the gradient. 

Suppose that for two directions, tI and tz ,  the directional derivatives of all the filter 
probabilities at po are positive. Then there exist constants c and C such that for every 
filter F 

Ppo+csr,[FI 9 G Ppot,r,[~l B G p,"o+ce,[~l 

for e > o sufficiently small. TGS 

e%, + cctz) 6 e%, + e t l )  < e%, + cet2) 

which, as in section 2, leads to 

B ( 4 )  = B @ Z )  

if the defining limit exisrs in either direction, and @+@I) = Bt(t2) and ,¶-@I) = p-(t-J 
otherwise. 

4. Wangular lattice model 

To illustrate the application of the substitution method, consider the threeparameter 
triangular lattice bond model, in which bonds are open with probability p ,  q, or r depending 
on the direction of the bond. To apply the substitution method, partition the lattice into 
edge disjoint triangles. Label the vertices of one such triangle A,  B ,  and C, so that edge 
AC has parameter p ,  A B  has parameter q. and BC has parameter r .  

The probabilities of the four non-minimal boundary vertex partitions are 

PCABCI = p q r  + g q ( 1 -  r )  + q r ( 1 -  p )  + p r ( 1 -  q )  

P [ A B I C l =  q ( 1 - p ) ( l - r )  P[AClBl = p(1 -q ) ( l - r )  P[BCIA] = r(1-pN1-q) 

and the eight filter probabilities are of the form 

p q r t p q ( 1  - r )+qr ( l  - p ) + p r ( l  -q)+iq(l -p)(l-r) t jpU-q)(l -r)+krU -p)U -4) 

Thus, the gradients of the filter probabilities, written as column vectors, have the form: 

q + r  - 2 q r  - i ( q  - q r )  + j(l - q  - r  + q r ) . - k ( r  - q r )  

fori  = 0, 1 ;  j = 0, 1 ;  and k = 0, 1. 

p + r  - 2 r p + i ( l  - q  - r + q r )  - j ( p  - p r )  - k(r - p r )  
p + q  + 2 p q  - i ( q  - p d  - j ( p  - p d  t k ( 1  - P - 4  - p d  
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As discussed in section 3, any direction which has a positive component in the direction 
of all eight gradients will have the same B critical exponent value as any direction in the 
positive orthant. Equivalently, any vector lying 'above' all eight half-planes through the 
origin which are orthogonal to these gadient vectors has the same B and y values as 
directions in the non-negative orthant. The eight gradient vectors are 

(q + r - 2qc P f r  - 2pr, P f q  -2pq) '  

(1 - qr. r - pr, 1 - p q )  

(1 - q,  1 - P. 0) 

(1 -r,O, 1 - p )  

Note that if a direction vector f has a strictly positive inner product with all 8 vectors, then 
(by viewing the inner product as a continuous function of the coordinates of the direction 
vector) every direction in a neighbourhood of t  does also. Since all the non-zero components 
of these gradient vectors are positive, for a > 0 and b > 0, vectors of the forms (0, a, b), 
(a, 0, b), and (a, b, 0) all satisfy this condition. Therefore, for E sufficiently small, directions 
of the form (-e, a, b), (a, --E, b), and (a, b, - E )  have the same B and y values as directions 
in the positive orthant. Hence, the set of such directions extends beyond the positive orthant 
for this multiparameter model. 

As a special case, we consider the point on the critical surface with all coordinates 
equal: p = q = r = 2sin(n/18). In this case, the gradient vectors (rescaled) give the 
directions 

(r -qr, 1 - pr, p - p q )  

(s - qr, P - pr, 1 - q p )  

(0.1 - r, 1 - 4 )  

(1 - q  - r  +qr, 1 - p  -r  + pr, 1 - p  - q  + p q ) .  

(1.1.1) (a. L a )  (1,a.a) @,a, 1) 

(1.1,O) (0, 1, 1) (1,0* 1) (1,L 1) 

where a = 2sin (lr/18) - sin (n/18)' = 0.2267. The direction (1 , l . l )  is normal to the 
critical surface at this point, so allows any direction of approach from within the percolative 
region. The region satisfying all six remaining cons&aints is the intersection of half-spaces, 
and thus is convex. The region may be characterized as the convex combinations of 
multiples of the six rays 

a 

(l,-l,?) ( l , - p )  1 -a (-1.1,- 

1 - a  
( y . 1 . - 1 )  (-1,"J) a (L+l,l) 

which are the intersections of pairs of planes perpendicular to the remaining gradient vectors. 

5. Discussion and remarks 

While the substitution method calculations explicitly used the detailed structure of the lattice 
through its use of filter probabilities, it made use of the exact critical surface only in 
characterizing the solution region: the positivity of components of the gradient vectors was 
valid for any (p ,q , r )  E (0, 1)3, and thus, in particular, for any point ( p , q , r )  on the 
critical surface. Thus, the method may show that the solution region extends beyond the 
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positive orthant for unsolved multiparameter models and, in particular, is not restricted to 
two-dimensional lattices only. 

The two-parameter square lattice bond percolation model, with different parameters for 
the horizontal and vertical bonds, was also considered. The substitution method was initially 
applied using two different regions for the unit of substitution: a four-pointed star, and a 
single square. In both cases, two filters caused restriction to the positive quadrant. For 
the four-pointed star, the filter corresponded to the events that the opposite vertices were 
connected by an open path, for which the probability is a function of only one parameter 
in each case. For the square, the filters also corresponded to events with probabilities 
independent of one of the parameters. By considering larger subgraphs of the square lattice, 
the solution region may be extended beyond the quadrant, since none of the filter events 
will have probabilities independent of a parameter. 

A larger subgraph of the triangular lattice may also be considered. As with the square 
lattice, it is expected that the solution region will become larger as the substituted region 
is enlarged. This is suggested by a computational method currently under investigation. It 
is an open question whether the solution region converges to the entire set of directions in 
the super-critical region. 

Similar results have been obtained recently in the more general setting of Fortuin- 
Kasteleyn random cluster models by Bezuidenhout eta1 (1992), using a diffferent technique 
introduced by Menshikov (1987) and applied by Aizenman and G r i i e t t  (1991) to king 
models. 

Amplitudes and amplitude ratios have been investigated via series expansions, Monte 
Carlo simulation, transfer matrix, and renormalization group methods. Privman eta1 (1991), 
section 6.5, provides a summary of numerical results for percolation models. The evidence 
for universality of amplitudes and amplitude ratios in anisotropic models is inconclusive, 
with Privman et a1 claiming that they need not be identical for different directions, and 
Nightingale and Blote (1983) suggesting they are identical for two-dimensional king 
models. The substitution method described in this paper is not sufficiently refined to 
provide mathematically rigorous proof of universality of amplitudes or amplitude ratios 
in anisotropic percolation models to settle this question. Note also that, while establishing 
identity of the critical exponents in different directions in these models, the method does 
not provide exact values, bounds, or numerical estimates for the exponents. 
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